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Abstract

The overlapping grid or Chimera method for representation of complex ge-
ometries within the context of finite difference methods has been used effec-
tively for a variety of problems, particularly in the area hydrodynamic sim-
ulation. In this paper, we introduce a second-order unsplit upwind method
of Godunov type for curvilinear coordinates and apply it to gas dynamics
simulations involving complex geometries by using overlapping grids.



1 Introduction

Since the appearance of the landmark paper by Harten, Lax and van Leer
on upwind finite difference methods and Godunov schemes a decade ago
[20], there has been rapid development of higher-order nonlinear upwind
finite difference methods for the simulation of compressible hydrodynamics.
Their huge success is demonstrated, for example, by the extensive adaptive
mesh refinement computations that have been done in recent years using
higher-order Godunov methods [1], [7], [8], [31] as well as the treatment
given in the recent books of Hirsch [23] and Leveque [25] summarizing much
of the recent literature on methods of this type.

In this paper we present an unsplit Godunov method for curvilinear grids
and use it with the composite overlapping grid method for representing com-
plex geometries. A composite overlapping grid, also known as a “Chimera”
grid, or simply an “overlapping grid”, is a set of logically rectangular curv-
linear component grids that completely covers a computational region and
which overlap where they meet. Overlapping grids have the capability to rep-
resent complex geometries within the context of logically rectangular grids.
Since each component grid can be relatively smooth, overlapping grids pro-
vide an ideal framework in which to use finite difference methods, which
tend to perform best on smooth grids. The potential of the overlapping
grid method was demonstrated by initial work in the late 1970’s and early
1980’s of Starius [34], Kreiss [24], and Steger [35]. This potential was borne
out by successful 3D aerodynamic simulations involving configurations as
complex as the space shuttle [12], and with moving components [19], and
also the development by Chesshire and Henshaw of the fully automatic grid
overlapping procedure for 2D and 3D grids (CMPGRD) that forms the basis
for the present work [9], [14], [16]. Recent work with CMPGRD-generated
overlapping grids is reported in [21], [22], [29], [30].

This paper extends the work of Colella [17] and Saltzman [33] on un-
split Godunov methods for multidimensional flows to curvilinear grids. The
method introduced here can be viewed as a modification of Colella’s quadri-
lateral grid method [17]. The differences lie mainly in the use of exact
differential volumes, rather than exact quadrilateral volumes and in the
approximation of the transverse flux terms in the Godunov predictor step.



2 The Difference Scheme

This section presents an “unsplit” Godunov-type method for systems of
conservation laws in ng space dimensions and on curvilinear grids. In ng-
dimensional Cartesian coordinates x := (z!,...,z¢), consider the system of
n conservation laws given by

ng
Oyu + Zawifi(u) =0. (1)

i=1
where u := u(z) : R"™ — R" is the n-vector of unknowns, and f*:= f%(u) :
R. — R", i =1,...,n are the flux vectors. A system of partial differential

equations written in this form is said to be in conservation form.

The system (1) can be transformed to a curvilinear coordinate system
with independent variables & := (£1,€2,€3) by using the chain rule. This

yields
Apu + Z (Z 0yit") - (O fi)> =0, (2)
= =1

which is no longer in conservation form. However it can be put in conser-
vation form by first introducing the functions éﬁl = Jp (0,88, i =1,..,n
where J; := det|?| is the determinant of the transformation Jacobian ma-
trix. It can be verified that the identity

Zd( & - O f) = iaﬂ (&) (3)
=1 =1

holds by noting that

ng _
Y 0uéli =0. (4)
{=1
Using (3), (2) can then be written in conservation form:
ng
JzOpu + ZageFe(u) =0 (5)
{=1

where the transformed fluxes are given by

=Y Gif'w), &= (0m")/Je. (6)
=1



For computational convenience, (5) can be rewritten as

ng
Opu+ JgY e FH(u) =0 (7)
=1

where J¢ := det|%|. In the form (7), all quantities can be computed from
the original flux functions f*(u), i = 1,...,nq using the elements of the
transformation Jacobian %.

The system (7) can also be rewritten in quasilinear form by starting with

(2) and using the relation

i of
Then ny
Oyu+ Je Al (u)Ogeu = 0 (8)
=1
where . )
n B Bfl
AE = @7’ .
) =3 6, )

Transforming from one set of dependent variables to another (say, from
conservation variables to primitive variables in the case of the Euler equa-
tions) is most conveniently accomplished when the system of equations is in
quasilinear form. In this paper, conservation variables will be denoted by u
and primitive variables by v. If these variables are related by the differential
relation

du= Mdv, MeR"xR"

then the equations can be written in terms of the primitive variables as

nd
O + Jey B (v)0pv =0 (10)
=1
where
Bf(v) := Mt AY(w) M. (11)

This transformation is used in section 3 when computing the eigenstructure
of the Jacobian matrices A¢(u). The conservative and primitive variables
are related directly by a nonlinear transformation of the form

u= N(v).
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Figure 1: Index definitions

2.1 Notation and Grid Setup

The method that will be introduced in this paper is a cell-centered finite-
difference method of Godunov type. It is essentially equivalent to a finite-
volume method, although the “volume” and “area” elements, rather than
being physical volumes of cells and areas of cell-faces correspond to differ-
ential volumes and areas. This is in keeping with the original approach
suggested by Chesshire and Henshaw in their paper introducing overlapping
grids [14]. It is also possible to derive finite volume methods of the tradi-
tional type for use with overlapping grids; this is discussed briefly in section
2.6 below, (see also [17]) although all the computations presented in this
paper use the differential form of the volumes and areas, since this informa-
tion is available as output from the CMPGRD overlapping grid generation
program. In transformed coordinates, £¢, each component grid of an over-
lapping grid structure is a tensor product of uniform one-dimensional grids,
with some grid cells possibly unused. The notation is illustrated in figure 1
for the two-dimensional case. Cell-centered values are denoted with integer
subscripts, while face-centered and vertex-centered values are denoted using
both integer and half-integer subscripts. Saltzman [33] introduces a conve-
nient notation that we will employ in this paper. Notation is simplified by
using “implied indexing”. This means that if an index is missing, it takes
some default value. The default values are integer values with the following
rule:

u=ugg (12)
An application of this rule is

wy _ ot
W =W 50 ke (13)



An additional convenience is to introduce indez functions as follows: In three
dimensions,

a =al): aol)=14,a(2)=703) =k, (14
B =p0): BQ)=7,8Q2)=FkBB) =i, (15
v =0 (1) =ky(2) =i,73) = (16

For two dimensions, a and ( are defined in the analogous way.

2.2 The corrector step

The Godunov-type method that will be introduced here can be considered
as a predictor-corrector method for advancing an approximate solution of
(7) by one timestep [17, 33]. The second step (the “corrector” step) of the
method (also the conservative step) is given by

ng 1 1
+1 +1
YL + E )‘eAeFlf((_)uZ—l—%’ (+)Uz+z) (17)
=1

where A\, := JgAt/Afe and Agua+; = — u__1 is the backward
2 2

a—|—% o
1

1 1
difference operator in the ¢‘-direction. The vectors (_)u::_i and (+)un+2
2

a—l—%
are “left” and “right” states on the cell face centered at (« + %, B,7). The
function Ff(ur,ur) is the approximate flux function. The evaluation of the
Jacobian determinant J; can be done in several ways; this is discussed in
section 2.6 below. As pointed out by Harten et. al. [20], one can write a
Godunov method either in terms of such an approximate flux function or in
terms of an approximate (or possibly exact) solution to a one-dimensional
Riemann problem for the left and right states ur, and ug, respectively. Since
the method discussed in this paper employs an approximate flux function
rather than a Riemann solver, the form (17) is preferred.

2.3 The predictor step

In some sense, the corrector step is the trivial step in the Godunov method.
For problems involving more than one space dimension, most of the so-
phistication, and hence most of the work goes into the computation of the

1
face-centered predicted values (i)qu—é, a =1,j,k, and in the evaluation of

the approximate flux function Ff(ur,ug). “Classical” Godunov methods,



such as those discussed in [20], are defined for systems of conservation laws
in one space dimension. In extending the concepts to more than one space
dimension, there are many options available, particularly in the design of
the predictor step. Both Colella [17] and Saltzman [33] introduce predictors
that keep as close as possible to the basic upwind spirit of one-dimensional
Godunov methods.

While the implementation details of a multidimensional Godunov scheme
can seem quite formidable, the basic theme in designing the predictor for
an “unsplit” Godunov method is to make sure that the difference scheme
computes updated values using previous values from the appropriate (up-
wind) domain of dependence. Much more detail can be found in Colella [17]
and in the book by Leveque [25]. In the method introduced in the present
paper, an approach very similar to Collela’s [17] is followed.

Given cell-centered values of the solution at timestep n, u := u%k, pre-
dicted values at face centers can be computed using the first terms in a
Taylor’s series:

AEE
2

n+i At
(:F)ua:tg =u—+ 78tu +

(All the values on the right-hand side of (18) are evaluated at cell centers
at time level n.) The spatial derivative on the right-hand side of (18) can
be computed using a difference approximation; the time derivative can be
evaluated by first using the differential equation to replace dsu with spa-
tial derivatives of the flux function F*(u) and approximating the resulting
expression. Both Colella and Saltzman take the approach of using the dif-
ferential equation in conservation form (5) and then expanding the flux
derivative in the &%-direction so that it is written in terms of Ogeu, leaving
the transverse derivatives in terms of fluxes. This leads to the formula

n+i ¢
(Flgsd =t FG(1F AeA (W) Ogrt — Je 3 0 0n F™ ()

— TS (BgeEls) - f(u). (19)

IS

Colella approximates Jgsu using a limited central difference. The flux deriva-
tives Ogm F™(u) are approximated in the same or similar way as in the cor-
rector step, by replacing them with 0¢m F™(u*) and determining u* using an
approximate Riemann solver. This approach retains the spirit of upwind-
ing since the approximate Riemann solve attempts to guarantee that only
components of u from the proper domain of dependence are used when dif-
ferencing the flux functions. This approach is also similar to the one taken



by Saltzman for three-dimensional rectilinear coordinate grids. There is an
additional complication in curvilinear coordinates, however, due to the final
term on the right-hand side of (19), involving the spatial derivatives of the
Jacobian elements 8§e££,-. As Colella points out in [17], care must be taken
that these terms be approximated in such a way that pure one-dimensional

streaming flows (i.e. flows in which all variables are constant) are preserved.
1

This is accomplished by making sure that (IF)UZIE = u when transverse
derivatives (O¢m*,m # () are zero. (In the continuous case, this always
holds identically.)

In the present method, free-streaming is preserved by using the quasilin-
ear form of the equations (8) instead when replacing dyu in (18). Equation
(19) is then replaced with

+1 Afz At
m#l

N

1
2

which does not contain the additional terms. Since any consistent approx-
imation of dg and J¢m will map constant functions to zero, free-streaming
solutions are trivially preserved by a method of this form. The quantity Ogcu
can again be replaced with a limited central difference, but it is desirable to
approximate the remaining terms Zm#Am(u)Bgmu in such a way that only
values in the proper domain of dependence are used. This is accomplished
by using a projection technique.

Colella [17] uses characteristic projection operators when computing the
limited “slopes” that approximate Aéea‘gzu in (19) When computing, say,

n+i . . . . . .
(,)umj, a locally linearized one-dimensional problem is considered near the
2

cell face centered at (a+ %, B,7). The approximation to Af"@szu is expanded
in terms of the right eigenvectors of the local flux Jacobian Af(u), and then
only components of the expansion corresponding to characteristics propa-
gating towards the appropriate cell face are kept; the remaining components
are set to zero. A similar procedure will be used here to approximate the
transverse flux derivative terms.

The eigenvalue problem for the flux Jacobian A(u) can be written as

AY(u)R*(u) = R*(u)A*(u) (21)

where Af(u) = diag{x{(u), k5(u), ..., k& (u)} contains the eigenvalues of A¢(u)
on its diagonal, and the right eigenvectors are the columns of R¢(u). The



left eigenvalue problem can be described similarly; the left eigenvectors are
the rows of the matrix L¢(u) := Re(u)_l. Projection operators (+)Pe(u) and
(_)Pe(u) are defined as follows: Let

T () = =A%) (A w) + A,

where |Af(u)| := diag{|k¢ (u)], ..., |5 (u)|}. Then
()P (u) := R (u) - ()T (u) - L(u). (22)

Projection operators (i)Pf('u) in primitive variable coordinates can be de-
fined analogously by instead using the left and right eigenvectors of B¢(v).
Then

)Py (v) = Ry(v) ) IT(w) L (v)

where the columns of R:(v) and the rows of L¢(v) contain the right and left
eigenvectors of Bz(v) respectively. A vector w can be expanded in terms of
the right eigenvectors of A¢(u) as follows:

w = Zaﬁrﬁ (u) (23)
k=1

where ozf; = EﬁT -w and rﬁ, EiT are the right and left eigenvectors, respec-

tively, of A(u). So the projection of u into the space of only those eigenvec-
tors corresponding to positive eigenvalues of A¢(u), or equivalently, right-
propagating characteristics of the local one-dimensional linearized problem
can be written as

(_,.)Pe(u)u: Z abrt (u). (24)
k3k5>0

With this notation, an approximation for the transverse flux derivative terms
can be written as follows:

AﬁeAe(u)ﬁgzu = Az(u){(_)Pe(u)AguaH + (+)Pe(u)Agu}
= { A'(W)Aguat1 ++ — A (w)Agu}. (25)

where the projected flux Jacobians 4 A¢(u) are defined by

+ A% (u) == R (u) (A (u) ) IT () L ().



This can be recognized as a standard first-order upwind formula for these
terms. Note, however, that since these terms are multiplied by At in (20),

they only need be first-order accurate in order for (:F)UZIE to be a second
2

order accurate extrapolation.

The term involving the extrapolation-direction derivatives Ogcu in (20)
is approximated in the standard way by first replacing the derivative with a
monotonized or “limited” central difference. The standard limiter is the one
introduced by vanLeer (see [25]). Its most general formulation for systems
of conservation laws is given by Colella in [17] and can be written as

n
Aﬁzé)gzu ~ Apu = Zdﬁrl[(u)

k=1
where
: C L R C : L_ R .
al = {mm(|0¢,C [, 2| |, 2| |)sgn(ag ), if o ay > 0;
0, otherwise,
and
akc = ﬁﬁTAogu
T
a,?’L = Ef; - (Ugr1 — w).

A simpler form of the limiter for systems does not involve the decomposition
of the approximation to Afeageu, but instead uses the primitive variables
v and limits their differences component by component. This is what is
actually used in practice by both Colella [17] and Saltzman [33]. The limiter
used is

Aw = (DA™, Ap®), ., Ap)T (26)

where

Ap®) = min(| Aogv®|, 2| A ®)|, 2| A ) )sgn(Bou®), if Au® A, >0
0, otherwise.

A further modification to the limiter is to discard the components of Ayv

corresponding to characteristics propagating away from the cell face. It is
1

convenient to compute (¢)uZii in two steps, first computing the contribu-
2

1
tion in the &¢ -direction, (:F)ﬂZii, and then computing the transverse flux
2



10

derivative contribution. Performing the entire computation in terms of the
primitive variables avoids the evaluation of the flux Jacobian A%(u). Sum-
marizing, and using the fact that (i)Pf(v) and Bf(v) commute, the predictor
step can be written

nt L 1 _
i1 = vE P )1 F B () Aw
) at; 2

m#l

(27)

n+1 W+l 1 m m m
(:F)ua:l:% = N ((:F)Ua:l:g — §Z>\mB (’U){(_)Pv (’U)Am’U5+1 + (-I—)Pv (’U)Am’u}>

Note that the number of operations required to compute the predicted
1

values (jF)uZig can be decreased by using a trick that involves subtracting
2

and adding a judiciously chosen reference state u,.; in the formula above
[17]. Also, (26) can be improved by using a fourth-order formula [33]. Eval-
uation of the flux Jacobians Bf(v) implicitly involves the evaluation of trans-
formation derivatives éﬁz The details are discussed below in section 2.6.

2.4 The approximate flux function

The numerical flux function used in the present method is a simplification
due to Pao and Saltzman [27] of the approximate flux function proposed
by Bell, Colella and Trangenstein [2]. A form of this flux function that is
convenient to evaluate computationally is introduced here. Let

o= (F(ur)’ — FY(ur)?) - (ur, — ug).
Then the approximate flux function is given by

¢ _  Pe = Xp_i{Be Jy max (ki (s),0)ds} - v (), ifo <0;
Fh(uLauR) = F n 1 . 0 /- .
« + 2 h=1{Bk Jo min(kk(s),0)ds} - (@), otherwise ,
(28)
where @ := $(ug, + ug),

F(ug), ifo <0;

F =
*(ULaUR) {Ff(uL)’ otherwise,

and ki(s) is a function that interpolates linearly between the eigenvalues
corresponding to the left and right states:

Kk (s) := skg(ugr) + (1 — s)kg(ur),
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and Sy are the coeflicients of the expansion of up — uy, in terms of the right
eigenvectors of Af(a), i.e.

(Br, -, B)T = L¥a) - (ur — ur)-

Basically, as with all approximate flux functions, (28) produces a stan-
dard upwind formula away from sonic points, but makes a careful transition
between left and right states near a sonic point.

Since the integrands that appear in (28) are simple linear functions, an
explicit formula can be derived for the approximate flux function. Define

ky = min(sgno - kg(ur), sgno - ki (ug))
ki = maz(sgno - kg(ur), sgno - kp(ugr)),
1/l 2y ap .1 2
* L K‘k/(K’k - ch) if Ky 7é K3 29
% { 1 otherwise, (29)

and
1
Ix(sp,ur,uR) = imam(min(sz, 1),0) - (min(kg,0) + min(k3z,0)).

Then it can be verified that (28) is equivalent to

n
F,f(uL,uR) = F*(’U,L,UR) + Zﬂk . I(S;;,UL,UR) . rﬁ(ﬂ) (30)
k=1

The representation (30) is simple to evaluate and vectorizes well.

2.5 Alternative Finite-Volume differencing

Another possibility for dealing with volumes and areas in the difference
approximation is to replace the differential transformation information with
exact or approximately computed cell volumes and areas, as would be used
in a traditional finite volume method. The main modification that must be
made is to change the corrector formula (17) to

1 1 ~ nal nal
un+1 =" 4 v;AeF}f((_)ua‘Fz’ (+)ua+§) (31)

where V' =V, ;  is the volume of the cell centered at x;;;, and the approxi-

mate flux function F,f is evaluated using the transformed flux function
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~ nd .
F(u) = AG_1 D f'(u) 7,
1=1

where Aﬁ , is the area of the cell face centered at x,,_1, and A := (Af, 7§, 7f)
-3 2

is the unit 2normal to that cell face. Corresponding modifications must be
made to the evaluation of the flux Jacobians B¢(v) and transformation ma-
trices RY, L* when they are evaluated during the computation of the approx-
imate flux function. The cell areas and volumes can be computed explicitly
from the (usually piecewise linear) representation of the grid coordinate sys-
tem.

2.6 Overlapping grids

An overlapping grid consists of a set of n, curvilinear logically rectangular
“component” grids that cover the computational domain and overlap where
they meet. Examples of some overlapping grids are shown in section 5
below. Each computational grid is a tensor-product grid in the transformed
coordinates £ with uniform grid spacings (A{ég, - Af,?:), ky=1,...,n4. On
each grid, each cell is indexed by coordinates and grid number (i, ky) :=
(s%,...,i"4, k,), with the interior discretization cells numbered in the range
My, 00 <% < My, 42, kg = 1,...,ng, £ = 1,...,n4. In addition there are two
rows of auxiliary “fictitious” or “ghost” cells added around the boundary of
each grid that are used in the boundary condition computation for each grid.
These are needed because the effective size of the finite difference stencil for
the second-order Godunov method described in this paper is 5 X 5 and so
the central point requires values at the previous timestep up to a distance 2
cells away. In regions where the component grids overlap, some of the cells
are used for interpolation of solution values from other component grids,
and some may be unneeded for the finite difference computation. There is
an integer array krjy, that is used to classify the cells with the rules

—kint if the value in cell (i, k) is interpolated from grid Kjny;
krig, = 0 if cell (i, kq) is unused ;
kg if cell (i, kq) is a discretization cell

The overlapping grids used in this paper are constructed using the CMPGRD
code of Chesshire and Henshaw [11],[14]. To benefit from the flexibility of
overlapping grids, it is important to write a PDE solver that can handle
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overlapping grids with any number of component grids and with arbitrary
configurations of boundary types. The DSK scientific database management
system of Chesshire [13] provides a convenient framework in which to accom-
plish this. It provides data storage allocation for the complex overlapping
grid data structures within the Fortran language.

When CMPGRD is used to generate an overlapping grid, it provides all
of the information needed to use that grid for a finite difference computation,
including the grid coordinates x;,, the transformation Jacobian elements
0,i&" evaluated at cell vertices (i — 3,7 — 2,k — 1), the “kr” array kryy .
which classifies each cell on the overlapping grid, and lists of interpolation
points on each grid and the grids they interpolate from. (More details can
be found in [10],{11]). The transformation Jacobian elements are used in
several places within the Godunov method described in previous sections;
since they are often required either at cell centers or along cell edges, they
must be computed from the CMPGRD data which is given only at the cell
vertices. Since the finite difference mesh is uniform in the £ coordinate
system, this is easily done by using standard central second-order averaging
formulas.

2.7 Updating the Solution on an Overlapping Grid

Since this finite difference method is explicit, the process of updating the
PDE solution at each timestep on the overlapping grids is quite similar to
the algorithm for a single grid. The Godunov scheme is applied to the
interior cells of each grid separately. Boundary conditions on grid sides
corresponding to physical boundaries are then updated. When all regular
cells on all grids have been updated, the interpolation cells are updated be-
tween component grids following the rules that CMPGRD provides. In the
present code, biquadratic interpolation is used to interpolate the state vari-
ables from a stencil on one component grid to each interpolation point on
each component grid. This form of intergrid interpolation is not discretely
conservative in the usual sense, since fluxes between component grids are
not balanced explicitly. However, experience with computations indicates
that this lack of conservation usually does not degrade the solutions; indeed,
none of the large scale computations reported in [3],[12],[19] use a conserva-
tive interpolation approach. This is perhaps not surprising if one considers
the following argument. For smooth solutions, the standard interpolation
procedure is approximately conservative since it follows that if the solution
is approximated to some order, then integrals of that solution must also
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be approximated to some order. It is only when a near-discontinuity such
as a shock passes through an interpolation interface that the conservative
property is lost. It seems reasonable that for a shock moving at finite speed,
the effect of the interaction with the interface will be felt only locally and
for a few timesteps, and so only a small perturbation of the solution will
result. This is consistent with the typical observation in our calculations
that moving shocks apparently do not interact with interpolation interfaces
in any significant way. The subject of conservative intergrid interpolation is
a complex one, and beyond the scope of this paper. Recent papers in the lit-
erature discuss this issue in depth, providing some options for handling this
problem [4], [6], [15], [28]. Special cases where conservative interpolation is
apparently important have been observed, particularly the case when very
slow shocks interact with a grid overlap region in which the mesh cell size
changes by a large (=~ 2 — 4) factor [5], [28]. The discussion of this situation
in [28] is quite interesting.

3 The Euler Equations

Most upwind schemes require detailed knowledge of the eigenstructure of
the flux Jacobians A%(u), £ = 1,2,3. The signs of the eigenvalues deter-
mine the local one-dimensional characteristic directions, and the left and
right eigenvectors are needed to compute the appropriate projections. In
this section, the eigenstructure of A¢(u) is presented in detail for the Euler
equations of gas dynamics in curvilinear coordinates.

It will simplify the notation in this section to let x = (z!,22 23) =
(z,9,2) and & = (£1,£2,€3) = (€,7,¢). Both representations for x and ¢ will
be used interchangeably. Also, in this section, vectors will be denoted with
bold face to distinguish them from scalars. Thus the dependent variables
are denoted by u and v; and x refers to the vector Cartesian coordinate,
while z refers to the coordinate z'. Also, the Cartesian velocity components
will be denoted either by (u,v,w), or equivalently, (u®, u?,u3).

Recall that the conservative flux Jacobians A¢(u) are related to the prim-
itive variable equation coefficient matrices B(v) by the similarity transfor-
mation of equation (11). Denote by R!(v) the matrix whose columns are
the right eigenvectors of B¢(v), i.e.

B'(v)R;y(v) = Ry (v)Af(u).

The eigenvalues x%, k = 1,...,n of A’(u) and B%(v) are the same and the
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transformation matrices are related by
MR’ (v) = R*(u).

It is simpler to compute R’ and then compute R’ using the similarity trans-
formation matrix M than to compute R¢ directly.
Following Hirsch [23], chapter 16, the conservative form of the Euler
equations in three space dimensions is written as
ng
Su+> 0uf' =0 (32)

=1

where ng is the number of space dimensions, and for ng = 3,

u = (p,pu,pv, pw, pE)" (33)
f' = (puza plu’l,u'l =+ 6i1pa PUZUZ + 6i2pa P’UZUB + 6i3pa pqu)T (34)
with H := E+p/p. An equation of state is required to complete this system.
To obtain the Euler equations in two dimension (n4 = 2), the fourth variable
and equation are removed; for ny = 1, the third variable and equation are

removed also.
In curvilinear coordinates, the equations become

nd
Ou+ Je > 0 Fi(u) =0 (35)
=1
where
pU*
{4 ot
upU” + Exp
Fu) = | vpU'+&p |,£=1,2,3 (36)
wpU* + Elp
U“(pE +p)

where we have introduced the contravariant velocities
ng
Ut = Zfﬁlu’
i=1

In terms of the primitive variables and in curvilinear coordinates, the Fuler
equations can be written as

nd
Ov + J¢Y B (v)0ev = 0. (37)
=1
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Here,

Ut & & Ep 0
vt 0 0 &/p
0 Ut 0 &plt=123
00 Ut €y
Epc? Ehp? Ep? U

O O O O

where c is the sound speed defined by ¢? := g—g\ 5. For the purposes of this

paper, a perfect gas is assumed; then ¢ = yp/p. The primitive variables

v are given by v := (p,u,v,w,p)T, where p = (v —1)(pE — pg®/2), and
q? == Y14 (u%)?. For a perfect gas, H can be reexpressed in terms of ¢ and
q:

C2

q2
H=——3+7 (38)

The transformation matrix relating A¢(u) and Bf(v) is given by

1 0 0 0 0
v p 0 0 0
M=|lv 0 p 0 0 [. (39)
w 0 0 p 0
¢ 1
o pu pv pw o o

It is convenient to define a scaled version of the transformation elements
and of the contravariant velocity by

& = &illEl,

~ nd ~ .
Ut = UYIEL =D & (40)
=1

where

o=

&= (i(éﬁf)

=1

With this notation, the eigenvalues of Bf(v) (and of A¢(u)) are given by

‘gf;'{ﬁ[ -G 0’2’0@’03,0{ +C} (41)
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A conveniently scaled form of the matrix of right eigenvectors of Bf(v) is
given by

pl2ec & & & pl
=&z 0 & )
Ry(v)=| -&/2 & o —&& &) (42)
—&/2 G & 0 &)
cp/2 0 0 0 «¢p/2

where here, the jth column is the right eigenvector corresponding to the jth

eigenvalue in the list (41). The inverse matrix, containing as its rows the
left eigenvectors of Bf(v) is given by

0 & -& —& 1/
L0 & =8 -y
Riwv)™' =& & o & -&/|. (43)
eg o0 ¢y
0 & & & 1

Computing R¢(u) and Ré(u)f1 is in principle just a simple matter of mul-
tiplying by M and M ™!, respectively. The resulting expressions are given

below. For the three space dimensional case, the transformation matrices
are

Rf(u) =
1 &t &t 3 1
u— kg Eau Egu — pE: Eou+ pgy u+ g
v— &} v + p€! &b v — ptt v+t
w — c€ &w — p€f Ew + pés Ew w + c&

A o 2 S 2 N 2 2 o ~ 2p a2 A
H—cU" p(lv—Ew) + 8% plébw —Eu) + 6% p(Eju—ELv) (Lf)ﬁ% H+cU*



and
Ri(w)” =
ﬁ _I_ Cﬁz
202(élw_§z
2(']?71)34 - 253:(
7202 C—((%fT)imﬂ) 2£y(
2¢?(éfv—ELu)
A i
@ _ Ut
2 v—1

_|_
_|_
+

Q
t\?

’Y

‘én

8

=

=)

)
71)

265u 2650 + (grcjf)ﬁp 265w ic %p
265u — 30 f;,, 265 265w W =5 6)p
2%t + %%,%ﬁ<fﬁ %m

(45)

In two space dimensions, a convenient form for the matrix of right eigen-

vectors is
1
¥
u—&;c
Ri(u) = :
4(“) v — gic
q° c?
7t

—cU*

1/c
u/c

v/c

and the left eigenvectors are the rows of

Ri(u)~! =
£ £
U + (7462) (f + (72;)“
c—A(v—lA)Q—c (v=1)%
—&bv + Eu —&
_0t (=l (gé _ G-y
2c 4¢2 2c 2¢2

0 1A
—£y U+ {ﬁc 16
£z v+ fgc (46)
0 2 A~
q?/2c {wv—{“yu %+76—j1+cUe
£
) (o) =
(y—1z - (47)
~ §$ O
(i _ (7—1)11) y=1
2c 2c? 2¢2

4 Boundary Conditions for Euler Flow

In the overlapping grid method, the computational region is covered with a
set of component grids that overlap where they meet and which accurately
represent all physical boundaries in the problem. The edges of each logically
rectangular or hexahedral component grid are either used to represent part
of the physical boundary of the computational region, an artificial boundary

1
—2¢%
_255
—2¢¢

1
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in the problem, or are part of a region of overlap in which boundary cells
are updated with an interpolation formula as described in section 2.6. In
this section, the implementation of the boundary conditions on the edges
corresponding to non-overlap boundaries is discussed. The implementation
details will be given for the two-dimensional case only; it is straight-forward
to generalize the boundary conditions to the three dimensional case.

The non-overlap boundary conditions in the code are implemented by
using rows of “fictitious” or “ghost” cells outside the edge of the interior
computational domain. The values in the ghost cells are set so that when
cells near the boundary are updated with and interior difference stencil in-
volving some of the ghost cells, the boundary conditions are approximated
to some order of accuracy. In a Godunov code, it is convenient to choose
the ghost cell values so that reasonable end states will be provided to the
Riemann solver or approximate flux evaluation along the boundary edges
of the grid. We will discuss this procedure for three types of non-overlap
boundaries: slip surfaces, outflow boundaries, and general far-field bound-
aries (including inflow boundaries).

In order to provide values for the approximate flux function evaluation
on boundary edges, the second-order Godunov method requires two rows of
ghost cell values outside the boundaries, plus each of the four cells diagonally
outside the corners of the grid. For the case when no cells along the boundary
have been removed in the grid construction process, this set of ghost cells is
defined by

ng,e,l S /8 S ng,Z,Q;kg = 17 "'angag = 172a (/8 = Jaz)

for
a= Mg, 01—2, Mg, 01— 1, My, 00+ 1, My, 020+2,0a=14,j

and

(4,5) = (Mg, 00— 1, My, 00—1), (Mg, 01— 1, My, 02+ 1),
(Mpgon +1, Mg, 00 — 1), (Mg, 01+ 1, My, 00+ 1)

In the case when some cells near the boundary of the region have been
removed, the required ghost cells are determined by inspecting each interior
cell near the boundary and determining which values are needed by the
discretization stencil. Each of the primitive variables p, u, v and p must be
assigned a value in order to provide endstates ur, and upg for the approximate
flux function evaluation.
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4.1 Solid Walls

On sides corresponding to solid walls, the only condition that needs to be
specified for well-posedness of the Euler equations is the slip surface condi-
tion u - i = 0. This condition can set only one of the four variables needed
for the approximate flux function evaluation. The remaining values must be
assigned consistently with this condition so as to maintain well-posedness.
A condition on the normal derivative of the pressure follows directly from
the slip wall condition. Most Euler codes simply set i1 - Vp = 0. However,
as pointed out by Rizzi [32], on a general curvilinear grid, this is only a
first-order accurate condition. A more accurate condition is given by

n-Vp=u-(u-V)ii=0, (48)

which corrects the normal pressure derivative to account for the acceleration
of the fluid due to the curved surface of the solid wall. Rizzi simplifies this
condition by applying the normal velocity boundary condition and writes
the pressure condition in curvilinear coordinates, giving

9p 9p Ong Oy
oz = —66—5 + Ut (ua—£ + ua—f) (49)
where £ is the curvilinear coordinate along the boundary, n is the (not
necessarily orthogonal ) coordinate moving away from the boundary, sub-
scripted variables are transformation Jacobian elements, U¢ := ¢,u + &y,
a=n2+ ny2, and 8 = 1€ + nyéy- A differenced form of this boundary
condition is used to obtain pressure values in the ghost cells at the boundary
of the grid.

Following arguments in Courant and Friedrichs [18],p. 297, the addi-
tional boundary values can be determined by considering the equivalent
local reflection problem at the boundary. It follows from this argument that
density and tangential velocity must be continuous across the boundary, and
so these values are set by imposing discrete continuity conditions on p and
t - u. Once the four values are set for each ghost cell, the approximate flux
function can be evaluated along the domain boundaries.

Consider the left-hand boundary of component grid k4 and for simplicitly
let Mig11=1, My, 01 =1, My, 20= M. The first and second rows of ghost
cells are indexed (0,j), (—1,7), j = 1,..., M, respectively; the first row of
cells inside the boundary are indexed (1,5), j = 1,..., M. The boundary
itself is at ¢ = % Denote by ii, a normal to this side, and by t a tangential
vector. To impose i - u = 0, we must first compute i - u in terms of the
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available grid transformation information. We define normal and tangential
vectors by

[

(77?/’ _nz)
(N> My)-

=
|

We define normal and tangential velocities UV and U’ by

N — .. .. .. .
Uij = Mgt + 1y,ijVij
T _ g oy
Ui = My,ijtij — Ma,ijVij

at gridpoint (7, 7). (The scaling of these velocities is unimportant since the
boundary conditions are homogeneous). Then the boundary conditions for
p, u and v are given by

pPog = Pl (50)
pP-1j5 = P25
Ug; = Ul (51)
vh,;, = -Us;
Up; = Ul (52)
vly; = Ui, (53)

The pressure condition (49) is approximated with divided differences. The
condition for pg ; is

A¢ 1

ay iy Pri—pog) + 5By (Prin —prio) (54)
I 943
o U%,j (u%a](’qma%ﬂ'i'% o 773;,%,3'_%) + v%,](ny,%,]—}% o n:’/a%ﬂ_%)) ?

where o; ; and f3; ; are the coefficients in (49) above. Values in this formula

not available at the appropriate points on the grid are determined using

central averages of available values. The approximation of the dp/d¢ in this

formula is only first order since it is not centered on the boundary line. It is

often the case, however, that the grid is orthogonal or nearly orthogonal at

the boundary, in which case this term vanishes or is very small. A similar

formulais used to determine p_1 ;.
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4.2 Far-field and Outflow Boundary Conditions

The approach we use to implement boundary conditions for artificial bound-
aries is to consider a locally one-dimensional problem normal, or approxi-
mately normal to the boundary, and decompose the solution into incom-
ing and outgoing characteristic variables using the projection operators dis-
cussed in section 2. Incoming variables are set to “free-stream” values,
specified as part of the problem, while outgoing varables are simply extrap-
olated by setting the first difference in the normal direction to zero. Using
overlapping grids allows the flexibility to choose grids that are orthogonal
near far-field boundaries, which simplifies the general specification of these
boundary conditions. This boundary condition is a relatively standard one
for compressible flow solvers, see e.g. [26]. This is a reasonably robust
approach except in the case when a shock impinges on the boundary. The
difficulty here is that the number of incoming characteristics at the boundary
changes as the shock impinges, making it difficult to specify the boundary
conditions at that time. To avoid this case, it is convenient to specify simple
outflow boundary conditions in which the first difference of all state variables
is set to zero at the outflow boundary.

4.3 Corner Boundary Conditions

Specifying boundary conditions at corners of grids can be problematic, espe-
cially since actual physical corners in a geometry can result in singularities
in the flow. The proper resolution of physical corners is beyond the scope
of this paper; instead we will consider the simpler cases of corners between
physical and artificial boundaries, and discuss an ad-hoc solution to the
physical corner boundary problem.

When there is a corner between a physical (i.e. no-slip) boundary and an
artificial (inflow, ouflow, far-field) boundary, the presumption is made that
the physical situation being modeled is of a solid boundary that continues
outside the computational region in some uniform fashion. The appropriate
boundary condition to apply for the corresponding corner cell is therefore
the no-slip boundary condition. If the artificial boundary ghost cells are
updated first, then the no-slip boundary conditions can be applied it the
corner cell in the same way as for any regular boundary cell.

Specifying boundary conditions for a corner cell at the intersection of
two no-slip boundaries is less clear. The common convention is to assign a
normal vector that is the average of the normals on the adjacent sides, and
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then approximate the no-slip boundary conditions in a consistent fashion.
Since the curvature of the boundary at this point is undefined, it is simplest
to i - Vp = 0, rather than Rizzi’s more complicated boundary conditions.

At a corner between two artificial boundaries, again a normal vector can
be assigned, and boundary conditions can be implemented with respect to
that vector. With overlapping grids, however, it is usually simpler to ar-
range that artificial boundaries do not intersect at corners. For example in
a problem involving exterior flow around some object, the grids defining the
object can be embedded in a large circular region rather than a large rect-
angular region, thus avoiding the question of specifying artificial boundary
conditions at a corner.

5 Computational examples

As a numerical example demonstrating the method we present a computa-
tion showing the interaction of a shock travelling down a channel with bumps
on the wall of the channel. Figure 2 shows the overlapping grid used for the
computations. It consists of three component grids: two semi-annular grids
with 98x16 cells, and an underlying rectangular grid with 105x70 cells. The
remaining figures show the solution at various times. The initial conditions
are a step function with discontinuity located at x = —.85, to the left of the
bumps. The discontinuity satisfies a Riemann problem in which the solution
is a right-propagating shock of speed approximately 1.61245 and no other
waves. The values of the constant states on either side of the jump are given
by

pr = 1.625, wup =1.00778, v =0.0, p;=2.0,
pr = 1.000, ug=00, vg=00, pr=10 . (55)

The irregularities in the contour lines for the initial conditions are a result
of the contour plotting package used; the lower portion of the initial shock
profile crosses into the lower semi-annular grid. The boundary conditions
used are of far-field type at the left boundary, outflow at the right boundary,
and general non-slip conditions on all other surfaces.
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Figure 2: The overlapping grid used for the computations.
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Figure 4: Fluid density at time 0.2.
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Figure 5: Fluid density at time 0.4.
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Figure 6: Fluid density at time 0.6.
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Figure 7: Fluid density at time 0.8.
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Figure 8: Fluid density at time 1.0.
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Figure 9: Fluid density at time 1.2.
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